An angle dominance criterion for evolutionary many-objective optimization
نویسندگان
چکیده
منابع مشابه
A stopping criterion for multi-objective optimization evolutionary algorithms
This paper puts forward a comprehensive study of the design of global stopping criteria for multi-objective optimization. In this study we propose a global stopping criterion, which is terms as MGBM after the authors surnames. MGBM combines a novel progress indicator, called mutual domination rate (MDR) indicator, with a simplified Kalman filter, which is used for evidence-gathering purposes. T...
متن کاملA New Evolutionary Decision Theory for Many-Objective Optimization Problems
In this paper the authors point out that the Pareto Optimality is unfair, unreasonable and imperfect for Many-objective Optimization Problems (MOPs) underlying the hypothesis that all objectives have equal importance. The key contribution of this paper is the discovery of the new definition of optimality called ε-optimality for MOP that is based on a new conception, so called ε-dominance, which...
متن کاملPreference-guided evolutionary algorithms for many-objective optimization
This paper presents a technique that incorporates preference information within the framework of multi-objective evolutionary algorithms for the solution of many-objective optimization problems. The proposed approach employs a single reference point to express the preferences of a decision maker, and adaptively biases the search procedure toward the region of the Pareto-optimal front that best ...
متن کاملA Comparative Study on Evolutionary Algorithms for Many-Objective Optimization
Many-objective optimization has been gaining increasing attention in the evolutionary multiobjective optimization community, and various approaches have been developed to solve many-objective problems in recent years. However, the existing empirically comparative studies are often restricted to only a few approaches on a handful of test problems. This paper provides a systematic comparison of e...
متن کاملIGD Indicator-based Evolutionary Algorithm for Many-objective Optimization Problems
Inverted Generational Distance (IGD) has been widely considered as a reliable performance indicator to concurrently quantify the convergence and diversity of multiand manyobjective evolutionary algorithms. In this paper, an IGD indicatorbased evolutionary algorithm for solving many-objective optimization problems (MaOPs) has been proposed. Specifically, the IGD indicator is employed in each gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2020
ISSN: 0020-0255
DOI: 10.1016/j.ins.2018.12.078